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only the diagonal element of the Green’s function,
which is the only one needed in the one-site ap-
proximation, but also any element. The proce-
dures are illustrated by reference to an impurity
in a “hydrogen metal.” Finally, we have dis-

cussed the Koster-Slater method in terms of atomic

orbitals.

AND C. -G. RIBBING

'S

ACKNOWLEDGMENTS

The authors would like to thank Professor Stig
Lundqvist for initiating this work, Professor
Per-Olov Léwdin for continuous interest and sup-
port, and Professor Norman March for valuable
comments,

*Work supported in part by the U. S. Air Force Office
of Scientific Research under Contract No. AF 61(052)-
937 with the University of Uppsala, and monitored by the
European Office of Aerospace Research, and in part by
the Swedish Natural Science Research Council.

T Present address: Department of Materials Science,
Stanford University, Stanford, Calif.

!G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167
(1954).

!G. F. Koster, Phys. Rev. 95, 1436 (1954).

’G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208
(1954).

‘Y. A. Izyumov, Advan. Phys. 14, 569 (1965).

SR. E. Turner and D. A. Goodings, Proc. Phys. Soc.
(London) 86, 87 (1965).

§3. L. Beeby, Phys. Rev. 137, A933 (1965).

'J. C. Stoddart, N. H. March, and M. J. Stott, Phys.
Rev. 186, 683 (1969).

8A. M. Clogston, Phys. Rev. 125, 439 (1962).

%J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).

G, E. Kilby, Proc. Phys. Soc. (London) 90, 181

(1967).

11G. Leman and J. Friedel, J. Appl. Phys. Suppl.
33, 281 (1962).

125, Callaway and A. J. Hughes, Phys. Rev. 156, 860
(1967).

3R. A. Faulkner, Phys. Rev. 175, 991 (1968).

4@) p, 0. Lowdin, Arkiv Mat. Astron. Fysik 35A,
No. 9 (1947); () J. Chem. Phys. 18, 365 (1950); (c)
Advan. Phys. 5, 1 (1956), Sec. 3.2.

¥p 0. Léwdin, R. Pauncz, and J. de Heer, J. Math.
Phys. 1, 461 (1960).

185, L. Calais and K. Appel, J. Math. Phys. 5, 1001
(1964).

g, Lafon and C. C. Lin, Phys. Rev. 152, 597 (1966);
J. Callaway et al., Intern. J. Quantum Chem. 48, 425
(1971).

185, L. Calais, Arkiv Fysik 28, 539 (1965).

195, L. Calais, Arkiv Fysik 29, 255 (1965).

2p, 0. L¥wdin, J. Mol. Spectry. 14, 119 (1964).

AR, J. Jelitto, J. Phys. Chem. Solids 30, 609 (1969).

PHYSICAL REVIEW B

VOLUME 4, NUMBER 2

15 JULY 1971

Transition-Matrix Theory of Low-Energy Electron Diffraction

A. P. Shen
37 Wade Drive, Summit, New Jersey 07901
(Received 9 October 1970)

A transition-matrix formulation is presented for calculating the scattering amplitude of an
elastically scattered beam from a crystal with perfect two-dimensional periodicity in the sur-
face plane. The scattering amplitude is expressed in the transition-matrix expansion for a
general potential. When applied to the muffin-tin potential model, Beeby’s multiple-scatter-
ing low-energy electron diffraction (LEED) theory, Kambe’s modified Korringa-Kohn-Rostoker
theory, Shen’s application of the Shen-Krieger variational LEED theory, and the transition-
matrix LEED theory can be transformed to give the identical exact solution of this problem.
In analogy to the pseudopotential formalism in the energy-band theory, the scattering ampli-
tude can be written in Born expansions for an effective potential which is, in general, weaker
than the crystal potential for the nearly-free-electron model. It is shown that the infinity of
the tangent of a phase shift can result in a resonance peak in the reflectance.

1. INTRODUCTION

The diffraction of low-energy electrons (LEED)
is an important subject because of its potential as
a method for studying the bulk and the surface
structure of a crystal. A LEED experiment is
performed by allowing a beam of low-energy elec-
trons to interact with the crystal, which is formed

by bringing together 10? atoms in one cubic cen-
timeter. It is not possible to solve this entire
system of complicated interacting particles exactly
by many-body quantum theory. Thus, a few as-
sumptions are essential in the LEED theory. First,
no relativistic effect need be taken into account
since the energies of the incident electrons are
very low (£100 eV). (Relativistic effects may notbe
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negligible in calculating LEED intensities for mate-
rials containing heavy atoms.) Second, the interac-
tion of the incident electrons with the collection of ions
and valence electrons is through an averaged crystal
potential, i.e., a one-electron approximation is
assumed. Third, lattice vibrations are neglected,
i.e., the temperature effect is not taken into ac-
count. In addition to the above basic assumptions,
a few more approximations have been assumed in
most of the theoretical LEED work. Since the
target crystal has a surface area of the size

10'® A2, the crystal is assumed to have an infinite
surface plane. Consequently, the plane parallel to
the crystal surface has perfect two-dimensional
periodicity. Finally, the wave function of the in-
cident electrons is assumed to be a monochromatic
plane wave.

Recently, a number of theories!~!® have been
proposed for the calculation of LEED reflection
intensities. The band-structure-matching formal-
ism'~® consists of calculating the total wave func-
tion inside the crystal and then matching the wave
functions and their derivatives inside and outside
the crystal on the surface boundary to obtain the
scattering amplitudes of the diffracted beams.

The total wave function inside the crystal is written
as a superposition of propagating and evanescent
Bloch waves with the same energy and the same
reduced parallel (to the surface) wave vector as
those of the incident electrons, i.e., the parallel
wave vectors are different by 27 times the two-
dimensional reciprocal lattices lying in the surface
plane. The wave function outside the crystal is
represented by the sum of the incident and the dif-
fracted plane waves with conservation of energy
and reduced parallel wave vector. Usually, the
Bloch wave of an infinite crystal is expanded into
plane waves whose fast convergence is achieved
by employing a pseudopotential'®?® for the band-
structure calculation. However, the pseudopo-
tential theory?! is basically a nearly-free-electron
model (NFE) for the energy-band spectra and it is
not applicable to all metals. Furthermore, the
band-structure-matching method is difficult in
practice to apply to crystals with surface contami-
nation.

A few other theories!'=!%!8 which do not require
the use of Bloch waves have also been given. The
common features of these theories are: (a) They
all start from the integral representation of the
Schrodinger equation, the Green’s-function meth-
od, which matches the wave functions inside and
outside the crystal automatically. (b) Physically,

they are all based on the multiple-scattering theory.

(c) All rest on the assumption that the potential

is the sum of nonoverlapping spherically symmetric
potentials. (d) The structural and the atomic prop-
erties are separated in the expression for the scat-

tering amplitude. The structural properties are
contained in the structure constants which are
functions of the incident energy and the parallel
wave vector and need to be calculated once for
each type of lattice. The atomic properties are
represented by the phase shifts of the spherically
symmetric potentials. (e) These theories are
most useful in studying crystals with a few layers
of foreign atoms. However, when we discuss
electron scattering from a semi-infinite crystal,
it is found necessary to combine Bloch waves in
the Green’s-function method. 16=18

In this paper, we shall apply Beeby and Edward’s??
multiple-scattering theory to investigate LEED
problems. However, the formulation here uses
reference columns as basic scattering units in-
stead of atomic planes parallel to the surface as
used in Beeby’s!® theory. The exact matrix ex-
pressions for the scattering amplitude have been
given both for a general potential and for the muf-
fin-tin-model potential.

In Secs. IV and V, we shall prove that, for muf-
fin-tin potentials, Beeby’s'® LEED theory,
Kambe’s'? modified Korringa-Kohn-Rostoker (KKR)
theory, Shen’s'® application of the Shen-Krieger
variational LEED theory, and the methods of this
paper can all be transformed to give the identical
result which is the exact solution of this problem.

In analogy to the pseudopotential formalism in
the energy-band theory, %1 we are able to write the
scattering amplitude in Born expansions for an
effective potential which is, in general, weaker
than the crystal potential for the NFE model. The
relationship of this effective potential with a pseudo-
potential is discussed.

The experimental observation indicates sharp
fluctuations in the reflection intensities. ?® McRae
and Jennings? have explained this phenomenon as
due to surface resonances. In Sec. VII, we shall
show that the infinity in the tangent of a phase
shift can result in a reflection intensity peak.

11. TRANSITION-MATRIX FORMULATION

The object of this section is to set up a formal-
ism in which we can treat the LEED problem by
using the transition-matrix expansion. The as-
sumption we have made is that the crystal has
perfect two-dimensional periodicity in the surface
plane. In the direction perpendicular to the sur-
face, the structural and the chemical compositions
are arbitrary. Thus the crystal potential has the
property

VE)= V@E+1), (2.1)
where I,=n,3,+n,3,, withn, and n, integers, is a
two-dimensional lattice vector lying in the plane
parallel to the surface. The notations 2, and 2,
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are the primitive translation vectors which lie in
the surface plane. The crystal potential V(T) can
then be written as the sum of the potentials Vi, (r)
centered at each two-dimensional lattice site I,:

VE)=21, Vi, @ - 1) 2.2)

The nonrelativistic one-electron total Hamiltonian
is denoted by

H=Hy+V({), 2.3)
where H; is the kinetic-energy operator
Hy=~ (7%/2m) V2 , (2.4)

The stationary solution of the Hamiltonian H is
denoted by ¥ () whose asymptotic behavior included
only the incident wave ¢'**F and the diffracted out-
goingwaves. The incident plane wave ¢g(T)= e'¥'r
has a propagating wave vector k and energy
E =7?k%/2m. The Schrédinger equation for y(¥)
may be written as

Hy([F)=Ep(F). (2. 5)

The stationary solution is also the solution of a
scattering integral equation?

lw)=[93)+GoV[y), 2.6)

where we have denoted the corresponding vector
of the wave function ¢(r)=(F|¢) as I¢). The op-
erator G, is the free-electron Green’s-function
operator of the system defined by?®

Go=lim 1

—, €>0.
€=0* E—H0+ZE’

2.7)
The Green’s function G,(r, T') is defined as the

matrix representation of the operator G,2" with

units such that #%/2m = 1:

1 WEFI

(F|G,lF =4 TI-T (2.8)

The advantage of using operators is that they are
usually easier in algebraic manipulation than their
matrix representations. However, care must be
taken when manipulating with singular operators.
As a generalization of Eq. (2.7), associated with
the Hamiltonian H for an energy E, a function G
is defined?®

1

G=lim ————F—, €>0

ot E—H+ie’ (2.9)

which is the Green’s function of the whole system
satisfying the relation?
G '—’Go +Go VG 5

G=Go+GVGo . (2. 10)

If we apply V(1 +GV) on both sides of Eq. (2. 6)
and make use of Eqs. (2.6) and (2. 10), we obtain
the following form for the vector [y ):

SHEN 4

[$)= (1 +GoT)|95) ,

where T is the transition-matrix operator associ-
ated with the electron scattering from the whole
crystal defined formally by®°

(2.11)

T=V+VGV, 2.12)
with the following properties®®:
T=V+TG,V ,
(2.13)
T=V+VG,T .

Because of the perfect two-dimensional periodic-
ity, the crystal may be described as being composed
by identical reference columns. The reference
column, first introduced by Kambe, !? is a column
whose cross section is equal to the surface net area
A=12;X2a,| and whose length is equal to the width
of the crystal. The transition matrix T associated
with the scattering by the crystal thus can be written
in terms of the transition matrix associated with
scattering of electrons from a reference column by
first iterating T with Eq. (2.13) and then substituting
Eq. (2.2) to the resulting Born expansions for T %!:

T=? ‘Ti" + -Z ,‘riu GOTi f
" 1,21,

+ E ‘r'l.u GOTIﬁGo‘rﬁlq- Tt (2. 14)

E,.;i;,

ll"#ll"’
where the transition matrix T3i, associated with
scattering from a reference column is defined by

77,= Vi, +Vi,GVi, (2.15a)

where G is the Green’s function of the system with
a reference column, and Ty, satisfies the following
properties:

‘ri" = VTII + VTHGU TI“’ ‘r’u = Vi" + Tf"GO Vi" .
(2.15b)

We note that the term T,=1,"" should be included
in the third term of Eq. (2.14). Substituting Eq.
(2.14) into Eq. (2.11), it follows that

[9)=(1+6oT 71,460 2 TiGe Ty )60
Ty Iy#1,

(2.16)

For identical reference columns, all the ‘1‘;"’5
are equal and we can denote 7§, by 7. By changing
coordinates to the two-dimgnsional lattice sites 1,
and then summing over all 1,, we obtain

[9)=(+8(T+TG 1T +-..))|¢3) . (2.17)
The integration in the above equation is taken over

a refe_fenc_e_ column. The structural Green’s func-
tion (T|§|r’) is defined by'>18
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(r|s|r")

=Iz<¥| Go|T ' +T,) e'FrTn
n

> - - - =2 e
- E 2 PR (Ty=ry )eiK,lx-x’l , (2.18)
7 2AK;
K3#0

where V=n Db, +nsb, with n{ and  } as integers, is
a two-dimensional reciprocal lattice vector in the
plane parallel to the surface. 51 and 52 are the two-
dimensional primitive translation reciprocal-lattice
vectors with the following conditions:

E¢'5!=6”, i,j=1, 2. (2.19)
The symbol K; is defined by
K;=[k2-(k,+2mv)2]/2, (2. 20)

which may be positive real or imaginary depending
on whether k2> (k ,+27v )% or B2<(Kk,+271V)%. We
have denoted X, and X, as the parallel and the per-
pendicular (to the surface) components of a vector
3’(, respectively. The incomplete structural
Green’s function is defined by

(FI8sTH=(TIg|T") - (T|G,|T")

= 2 (F|Go|T'+T,) et (2.21)
#0

1y

The structural Green’s function § absorbs all the
scattering from all the equivalent reference col-
umns. The incomplete structural Green’s function
G, excludes the term -f., =0. This omission is fun-
damental to the theory which uses an expansion in
terms of the transition matrix instead of the expan-
sion of the potential V.

The wave field in the vacuum region far from the
crystal is obtained by letting z—~ - in Eq. (2. 17):

[9)=le8)+2 Rilogy) (

o

22)

4

1)

which is the sum of the incident plane wave e'*’
and all the allowed propagating reflected beams
biz= g“? T i‘n the direction of Es whose components
are (k,+2rv, —K;). Each reflected wave has its
parallel wave vector different from the incident
parallel wave vector E., by 27 times a reciprocal
lattice vector V. This is the consequence of the
perfect two-dimensional periodicity in the surface
plane. The scattering amplitude is defined by

-1

Ri=24x:

(Ps3|T+TG T+TE TS Too.|0g) .
(2.23)

This is the general formula for the scattering
amplitude as a power series of the transition ma-
trix T associated with the entire scattering proper-

ties of electrons scattered from a reference column.
The various terms in the above equation can be in-
terpreted easily by multiple scattering between ref-
erence columns. The first term is the first-order
transition amplitude of an electron scattered from
the state e'*'T to the state e'*¥* by simple scattering
from the reference columns. The scattering am-
plitude of an electron scattered by a reference col-
umn is shown by Fig. 1(a). The second term rep-
resents the total transition amplitude of an electron
via double scattering between the reference col-
umns. The mechanism associated with the second-
order scattering is shown by Fig. 1(b). Figure

1(b) represents the scattering process that an inci-
dent electron is first scattered by a reference col-
umn, then the scattered electron propagates to

(o)
[ ] [ ] [}
X
142 ’
Y
a, i

SINGLE SCATTERING

(b) e o o
(K7)
{
K)

[ J [ ] [}

DOUBLE SCATTERING
) o o o o © o

T
(Ky)
+ o
K
[ J [ J [ ]

TRIPLE SCATTERING

FIG. 1. Diagrams representing the scattering pro-

cesses associated with the first three terms in Eq. (2.23)
in which reference columns are considered as basic scat-
tering units. The diagram shows the front view of the
crystal. The dots represent the two-dimensional lattice
sites and the solid arrow indicates the direction of the
electron propagation. 2; and 3, are the primitive trans-
lation vectors in the surface plane. () and (ﬁg) repre-
sent the incident and the diffracted beams, respectively.
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another reference column which scatters the elec-
tron to the final state ¢'E¥'F outside the crystal.
Similarly, each nth-order term represents the tran-
sition amplitude of the electron after » sucessive
scatterings by the reference columns. The third-
order term is represented by Fig. 1(c), which
shows two types of triple scatterings between the
reference columns.

By manipulating the operators, the perturbation
terms in Eq. (2. 23) can be summed formally to give
the scattering amplitude in a compact matrix inver-
sion form:

R;=- (et -

i
2AK: (¢
provided the matrix 7 and G, are well behaved. As
long as the potential is integrable to obtain 7, the
scattering amplitude of a diffracted beam in the di-
rectionvof k ; can be computed by either Eq. (2.23)
or Eq. (2.24). We note that besides the perfect
two-dimensional periodicity of the crystal, there
are no other restrictions imposed on the potential.

8 o), (2. 24)

III. APPLICATION TO COMPLEX-ATOMIC MULTIPLE
LAYERS

In Sec. II, the scattering amplitude is given in
terms of the transition matrix associated with the
scattering of an electron scattered from a reference
column. For LEED, the incident electrons usual-
ly penetrate at least a few layers of the crystal;
thus, the first task of this problem is to compute
the reference column transition matrix 7. Kambe!?
has pointed out that for complex-atomic layers,
the reference column can be chosen such that the
walls of the reference column do not pass through
the center of any ion. For a crystal with a finite
number of atomic layers, we can label the N ions
assigned in the reference column, i.e., the ions
whose centers are in the reference column, by the
number p=1,2,... N. The center of the uth ion
is located at ¢,. Thus, the crystal potential in
the reference column can be written as

t)=2 V,[F-¢,). 3.1)
“w

Since the potential is not restricted to the muf-
fin-tin model, V, (r) is the potential in the uth
polyhedron, which is a primitive cell for mono-
atomic layers or a Wigner-Seitz-like polyhedron
for complex-atomic layers. The reference-column
transition matrix 7 may be written in terms of
the single-center transition matrix ¢, associated
with the scattering of an electron scattered by the
potential V,:

7= Zt +2 t,Got, +Zt Goty Goty+oeo
w#y
G*v

3.2)

SHEN

4
where u, v, £=1,2,...,N and the single-center
transition matrix ¢, is defined by

t,=V,+V,GV,, (3. 3a)

where G is the Green’s function of the system with
a single scattering center V,, and £, satisfies the
following conditions:

t,=V,+V,Got, ,
t,=V,+t,G,V,

(3. 3b)

Equation (3. 2)may readily be obtained by substitut-
ing Eq. (3.1) into Eq. (2. 15) and making use of
Eq. (3.3). The calculation of the single-center
transition matrix f{, may be carried out by applying
the methods used in collision theories [for example,
see M. L. Goldberger and K. M. Watson, Collision
Theory (Wiley, New York, 1964), pp. 221-357]
for both noncentral and central forces. The latter
will be discussed in Sec. IV.

The reference-column transitiopn matrix 7 can
be computed by using the multiple-scattering series
of Eq. (3.2).

The reflection coefficient R; can be expressed in
terms of the single-center transition matrix ¢, by
substituting Eq. (3.2) into Eq. (2.23):

1
Bi= (- gz ) 05/ LS+ T Gt )

+ (2 tu+ 20 t,Goty+ -+
® n#v

)S(Zt+ZtGOt+ 2)

w#v

)9(2t+2t00t+ 2)

324

+ (2 b, + > t,Got,+
'3 (1327

XGUDD t,+ 20 t,Goty+ v+ )+ ]| b3) (3.4)
N p#v
By changing coordinates to the centers of the ions
associated in the reference column, i.e., we de-
fine the coordinate in the uth polyhedron as
f,=%¥-C,, Eq. (3.4) thus becomes

R;=<

ZAK') Z (5] (100, + 1,871,

+Ze)tu9'“‘t,9""t,,+---)|¢>§>, (3.5)

where §’“¥ is defined by
(F,]8"[%)

=(F,+8,[8""|F,+8,) = (F.+ 8, | G| F1+ E,)0,,
=(F|§[T") ~(F| Go| T 0u, (3.6)

and | ¢*) is defined by
(Fu| ") =(F,+E,] 9 . (3.7)

Similar to the discussion given in Sec. II, the
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various terms of Eq. (3.5) can be interpreted by
multiple scattering between different single-scat-
tering forces centered at the centers of the ions.
The nth term of Eq. (3.5) represents the nth-order
transition amplitude of an incident electron with the
wave function e'f'F scattered to the state 5% in
vacuum via n successive scatterings between dif-
ferent single-scattering centers.

IV. APPLICATION TO MUFFIN-TIN POTENTIALS

In this section we apply the transition-matrix
formulation to muffin-tin potentials. Since we shall
obtain the exact reflection coefficient, it does not
make any difference whether we use the expansion
in the reference-column transition matrix 7 shown
by Eq. (2.23) or Eq. (3.4) or we use the expansion
in single-center transition matrix ¢, shown by Eq.
(3.5). Inthe muffin-tin potential model, each
atom lies at the center of a nonoverlapping sphere
within which the potential is spherically symmetric.
In the region between the spheres, the potentialisa
constant, Thus, the potential V,(T) of Eq. (3.1)
satisfies the following conditions:

V,.(T) =V, (») is spherically symmetric

for r<7,, 4.1)

V.(¥)=0 for r =7,

where 7¢ is the radius of the uth potential sphere.
For a spherically symmetric potential, the single-
center transition matrix ¢, can be expanded into
spherical harmonics and it is diagonal in the angular
momentum representation:

Z} SARBEAAEH ST

-’,>6LL' ’

4.2)

(Fultu|70) =

where (T, |Y,) is the spherical harmonics defined
by

e L) (Bt s e

(4.3)

with »,, 6,, and ¢, as the spherical components of
T, and L indicating the pair of indices I, m. The
function P)™! is an associated Legendre polynomi-
al.% The normalization condition of the spherical
harmonics is

<‘y.L'[(yL>=6LL' . (4.4)

The incomplete structural Green’s function §’'**
may be expanded into spherical harmonics!?:

(F,|8"**|F))= 2 (F,|LRSLEUL'R|T)), (4.5)
L,L’
where (T, | Lk) is defined by
(Fu| LBY =(F, | Y X7, | 5uk) (4.6)

with (r, |j,k) a spherical Bessel function of argu-
ment 7, k. %
The coefficient §;4% can be shown as'?

gIuv=A @.7)

The imaginary part comes from the imaginary
part of the Green’s function (T, |G,|T,) which is
diagonal in the angular momentum representation.

(T,] Go| T

-k T G, |Lk>(<’ RALN) ,’3 ')6“'<L'k|ﬁ>

Lz +1k8 100,

ry<ry<rt (4.8)
where (r, |n,k) is a spherical Neumann function of
argument »,k. % The structure constant AL}, is
characteristic of the incident energy, the parallel
wave vector k,, and the lattice structure, but in-
dependent of the potential and the lattice constant.

The plane wave can also be expanded into spherical
harmonics!?

(F,| o8y =2 4miX(F,| LY | k) e'F% (4. 92)
L

and
(65 Fu) =20 ami (k5| Y (LE|F,) et F2
L

(4.9b)

By substituting Eqs. (4.2), (4.5), and (4. 9) into
Eq. (3.5), and by integrating over the surface of
all the spheres assigned in the reference column,
we obtain an exact scattering amplitude in per-
turbation series:

Ry=- 2 @n? i K|y ) et
L,L’'

X4

i
2AK,
X (| 4Y8, 106, + (k| )G L8Y (R ) + - - +)

x (Y. |K) et | (4. 10)

where (k|#) is the diagonal element of the transi-
tion matrix ¢, in the angular momentum represen-
tation®;

. . 1 .
(k| 5y =(j,k| t5] j k) =(Lk|t,| Lk) =~ 7 S e
(4.11)
where 7} is the /th phase shift of the uth muffin tin.

The geometric series in Eq. (4.10) can be
summed formally to obtain

R;=-

2.1°-1 -(k-O .
zAKv L‘.SL. (@n)s “(k3 Y.

TR

x{( -8 )L (Y | K efF 4.12)



388 A. P.

With the aid of Eq. (4.11), the matrix (t'-g’)
can be written as

F=("'-8")=~ (A%}, + kcotn} 6, ,.6,,) . (4.13)
If we define a column matrix D with the element
D% =4n ety k) (4.14)
and a row matrix E with the element
Ef =4me” W% () (ks|Y,) | (4. 15)

then by making use of Eqs. (4.13)-(4.15), Eq.
(4. 12) can be rewritten as

Ry=- 57— EF'D.

2AK EF-'D 4.16)

If we rearrange terms in Eq. (4.10), we can
easily obtain

R,:(— i—('—*"—)z> 2z

ZAK; L,r'
+ 25 Bty g Ty et
w#y 1 172 "2

KR Y(T ey,
[

+ 2 etEirtag
w#
[

e, )

(4.17)

142 v
T
91. L, 1,21,39L3L4 L€

X(yl,'ii) ’

where 77 ;. is the element of the matrix 7, (the

nomenclature is the same as that used by Beeby'?)

in angular momentum representation:
T ={rute = {0 -8 (4.18)

The matrix T, represents the total scattering op-
erator for an electron scattered from a single
monoatomic subplane p with the perfect two-dimen-
sional periodicity.

Equation (4. 17) is equivalent to that obtained by
Beeby!® except that of the factor 1/K;. This dif-
ference arises from the assumption of Beeby’s the-
ory that the target crystal is small compared to the
distance to the observation point. The asymptotic
wave function in his theory is, therefore, a spher-
ical wave. Without making this approximation,
our method has found the diffracted beams in the
vacuum are propagating and exponentially decaying
plane waves by assuming the perfect two-dimen-
sional periodicity. Thus, our method not only pro-
vides an exact solution but also can be extended
readily to the calculation of the exponentially de-
caying waves near the crystal surface.

V. DIRECT ALGEBRAIC APPROACH

In Sec. IV, we have expressed the reflection
coefficient in the explicit matrix form of Eq. (4. 16)
by formally summing up the infinite perturbation
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series of Eq. (4.10). However, the convergence
of the perturbation series is not proved. In this
section we shall obtain the same exact result by a
direct algebraic derivation which justifies the
validity of the formal summation.

Also in this section we shall show that under the
same assumptions, the results given in Sec. IV
is identical to those obtained by Kambe'? and by
Shen.!® Since the crystal possesses perfect two-
dimensional periodicity in the surface plane, the
Bloch theorem®® requires the corresponding two-
dimensional periodicity for the wave function in
the crystal:

(F+1, 9 )= In(Fly) (5.1)
Substituting Eq. (5.1) into Eq. (2.6) and summing
over all the two-dimensional lattice vectors 1,, we
obtain
l)=]oe)+s Vv . (5.2)
By taking z- -« in Eq. (5. 2), we again obtain

the wave function in the far left region from the
crystal as expressed in Eq. (2.22):

|4)=| d3) + L Rye'S" T, (5.3)
v

where the scattering amplitude is now expressed

in terms of the potential,

Ry=(o5; | VIn)(~i/24K,) . (5.49)

The integration is over a reference column. We
then combine Egs. (5.2) and (5.4) to make R; ap-
pear explicitly in Eq. (5.2):

|¢>~l<z>k>‘—/2*‘—"—‘L @5 | V|9 +gV]|v) . (5.5)

By using the properties of Eqs. (3.1) and (4.1),
we can change coordinates and rearrange terms to
obtain

(-14)

N
(1 -GoVu)|u*)=2s {|¢ £ 7oAk,

x (95 | +9'“"} 1AESW
(5.6)

We operate the single-center transition matrix
t, defined by Eq. (3. 3) on both sides of Eq. (5.6);
thus it follows that

Vu IIP) i{t [d)g R(ZAZ;{



'S

X (bt | +tu9“‘"}V |9*y - (5.7

AISES > t“|Lk>(—‘(§-"—)’—l—<‘y |K) (K5 | Yoy ' ® 2Bt av’+<3 >(L E|V,|47)
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With the aid of Eqs. (4.2), (4.5), and (4.9), we
obtain a set of linear equations:

(5.8)

We then operate (LkIT,) on both sides of the above equation and it becomes

~i(4m)%"

2 [awaw - <(Lk| tulLk) =ik o

L'w

oGt B8 (o |B) (B |Y,0) +9'L“L"’>]<L'kl v,[#)=0. (5.9)

In order to have nontrivial solutions for the set of linear equations, the determinant of the coefficient of

(L'E| V,1¢") must vanish:

det|((Lk|t,|LE)™8,,6.. - G'tL) -

24Ky4 Ry

The matrix element of the first term is identical
to that which appears in the denominator of Eq.
(4.16). Equation (5.10) may be written in the fol-
lowing form with the aid of Eqs. (4.13), (4.14),
and (4.15):

(1)

This is identical to that obtained by Shen’s!®
application of the Shen-Krieger variational prin-
ciple. In the Appendix we shall show that the same
determinantal equation can be obtained by Kambe’s
LEED theory.

Now if we go back to Eq. (5.9) and write
(LE|V,19y") as C; which is an element of the col-
umn matrix C, Eq. (5.9) then becomes

det| Fyy» - Dy E7.[ =0. (5.11)

FC=-7—— 8D

FC= -5k PD (5.12)

where

B=EC. (5.13)
If we suppose the matrix F has an inversion

F !, we can operate F ™! on Eq. (5.13) and then

operate E on the resulting equation to obtain3®

(5.14)

which is identical to Eq. (4.16).

This completes the proof that for a finite number
of layers with muffin-tin potentials, Beeby’s mul-
tiple-scattering LEED theory, !* Kambe’s modified
KKR LEED theory, !2 Shen’s application of the
Shen-Krieger variational method, !¢ and the meth-
ods presented in this paper all give the same exact
solution and can be transformed into one another.

iy 2.1-1 . . o
( 1)(47[)2 (cyL|k>(k;‘tyL'>ei(k'!u-w-8“)

=0. (5.10)

VI. NEARLY-FREE-ELECTRON CASE

The band structures of many metals and semi-
conductors are nearly-free-electron band struc-
tures. This free-electron-like nature suggests
the possibility of using perturbation theory for the
calculation of the energy-band spectrum and leads
to the introduction of the pseudopotential theory.®
By constructing a pseudopotential which is weak
due to the effect of adding a negative potential to
the true crystal potential, the same band structure
can be obtained. In this section we shall show
that corresponding to the pseudopotential theory for
the band structure calculation, the scattering am-
plitude R; of LEED may be written in Born expan-
sions for an effective potential which is weak com-
pared to the crystal potential.

By substituting Eq. (3.6) into Eq. (3.5) and by
regrouping terms in the resulting equation, it fol-
lows that

et u
Ry = 2AK, uz';v {<¢k, |Tu05,,
+T,8* T+ |of)}, (6.1)
where the operator T, is defined by®®
T, =(t1+Gy) ™ . 6.2)

For spherically symmetric potentials, the ex-
plicit plane-wave representation of ¢ ,:‘ and G, are
given by Egs. (4.8) and (4.11), respectively.
Since both £, and G, are diagonal in the angular
momentum representation, I', is also diagonal
in the angular momentum representation. We can
expand I', in spherical harmonics:

(rlr, |7

>=ZL)<r|F:‘|r'><F|yL><m|F'> (6.3)



390 A. P.

The diagonal element of I', in angular momentum
representation is defined by
T%p=(irk|TF |jsk) 6ppe = CR| T ) Oy
== (1/k)tann’} 6,;. , (6.4)
where the cotangent of the modified phase shift
7" is defined by

(rf|nk)

e o
cotn;"” = cotn, )

_(rili k) - (r{ |n;k) tanmy

tant (7F 1j; &) 9
with 7} chosen between the interval (0, »$).
Now if we define a function |¢,) by
(Flge)=(T]@u)+(TIST|4t0) (8.8)

where T is an effective potential for a reference
column,

r=,r,, (6.7

then |y, ) is a solution of the Schrédinger equation

H,Yy,=E}, , (6.8)
where the effective Hamiltonian is defined by
H,=Hy+ L T(¥-1). (6.9)
Iy

With the aid of Eq. (6.6), Eq. (6.1) may be written
as

Ry=~gaz @5 T10) . (6.10)

If we compare the above equation with Eq. (5. 4),
we see that the scattering amplitude Ry is now ex-
pressed in terms of the effective potential I' and
the effective wave function 1¢,). Thus Eq. (6.1)
is in Born expansions for an effective potential I,

By making use of Eqs. (6.3) and (6.4), it fol-
lows immediately from Eq. (6.1) that

i
Ry=——— (47)% 2J
YTk, T

v

o8 (G ]Y,)

X(Tpp 0,,0ppr +T4.S 0o Thups+ o0 )

X" (Y |Kye't E, , (6.11)

where

{(ryln B
Siye :A‘;‘E. +k m 82+ 0,y .

We note that 7} is chosen according to the 7} in
Eq. (6.5).
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The ratio (} In, k) /{r{ |j, k) becomes very large
after [ is larger than 2 or 3.%® Thus, tann;“ is
small for / larger than 2 or 3, no matter what
value i} is. This may be a very powerful factor
for fast convergence of the Born expansions in
Eq. (6.11).

In the case where tannj is small through the en-
ergy range considered for LEED problems,
tann’ remains small except when {r}|j, k)

- (r{In,k) tann} is very small. However, by ad-
justing the value of ', (v} |, k) = {r} In; k) tann}
can be avoided to be near zero.™ Thus,

tann;* ~ tann} ~sinn} . (6.12)

For small tannj, the phase shift may be obtained
by the Born approximation*

tannt = -k (G k| UY|3iR) (6.13)

where (r, |U} |7,) is the spherical component I of
a pseudopotential®’;

ru|UE|rL)

< CulVe) I:,,l ) 80y =71) =2 | Vxta) (lal?")

Yu¥p

(6.14)

with | x;, ) the radial wave functions of the uth
atomic core state of momentum /. The sum is
over all core states a.

If we take only the first-order terms in Eq.
(6.11) and substitute Eq. (6.13) for tann}, we shall
obtain

i

Re= -1k,

(4m) 2 e W20+ 1) P& K5 /R
w,l

X Gy k| UP|j By %

=2 ' k(o | U, | ¢:‘:)<— M;{'> ,  (6.15)

where P, is a Legendre polynomial and ( r-'.u I Uulﬁ')
is a pseudopotential defined by*

@ UL T =(Tu| V)6 (r, - TL)
—:E (Ful ValXia) (Xba|Th), (6.16)

whose spherical components are (r,|U} |7,) and
the sum is over all core states |x},), which is
defined by

(FulXtay =(ru Xt (TulYL) . (6.17)

Equation (6. 15) is the first-order Born approx-
imation for a pseudopotential. We note that it is
accurate only to the first order in tanp} <«<1. To
this order, tann ~sinn;, Eq. (6.15) is also equiv-
alent to that obtained by taking the first-order
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terms in Eq. (4.10):

_(ién wE-E3)2
R;= (ZAK,k) Z e w20+ 1)

x P,(k -k; /k?) sinn® '™t | (6.18)
which is just the pseudokinematic theory.'?

McRae!! and Watts'® have shown that the Born
approximation does not predict the secondary Bragg
peaks arising from multiple scatterings between
identical atomic planes. For the investigation of
secondary Bragg peaks, it may be necessary to
include higher-order terms in Eq. (6.11).

VII. RESONANCE CASE

In the case where tan7} passes through an infinity
in the incident electron energy range for LEED,
I';; also has a corresponding infinity at the reso-
nance energy despite the adjustment of »%.%® It
follows from Eq. (6.11) that the singularity in the
matrix element I';; leads to a peak in the reflec-
tance. It seems that Eq. (5. 14) is a more suitable
formula for calculating the LEED intensities in
this case since the matrix involves the small value
of cotn] at the resonance energy. The consequences
of the resonance on the scattering amplitude can be
estimated only by detailed investigation. However,
for illustration purposes, we consider the simple
case of a pseudokinematic theory with resonances.
For simplicity we assume the crystal is monoatomic
and there is only one resonance in the energy range
discussed here. Thus the phase shift can be written

as39

tann, = tanm; '+ (7.1)

w
120‘_ E Oll ’

where E, is the resonance energy and tan7;’is a
small value defined by

tann; "= - k(j,k| U;|j o) . (7.2)

W is the width of the resonance and is defined by
W=k{(j k| V]®,), (7.3)

where |®,) is the resonant function satisfying

A(r+1)

1
(- 72 VAV Ve = -Eo) [&)=0, (7.4)

with the following boundary conditions:

(7| 9|18, ),.,e= (7| v|In(,k))

(7.5)

r=r¢ -

The symbol V means d/dr.

The second term in Eq. (7. 1) is also very small
except when the incident energy is near the reso-
nant energy E,.

By substituting Eq. (7. 1) into Eq. (6. 18), we ob-
tain
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Ry= (41:){ Y et % (21 41) P, (k - k3/#?)

ZAKk

x sinn! e’ =20 &t 82 (20 +1) P, (k 'Eé/kz)
°

x W/(E - Eo+iW)} , (1.8)

which is the pseudokinematic theory with a reso-
nance. Near the resonant energy E, there is a
peak in the reflectance.

VIII. DISCUSSION

The method outlined in this paper provides a gen-
eral and fundamental theory for the calculation of
LEED intensities. The scattering amplitude of the
diffracted beam in the direction of k3 is expressed
in power series of the reference-column transition
matrix 7 by Eq. (2.23). The method of considering
reference columns as basic scattering units is
probably advantageous in dealing with systems which
favor strong scattering in the reference columns
but relatively weak scattering between the reference
columns. One possible example of these systems
is the system of normally incident electrons on a
crystal with closely packed atoms in the normal
direction to the surface.

The calculation of the reference-column transi-
tion matrix 7 by using Eq. (3. 2) may turn out to be
complicated. However, the possibility of obtaining
approximate solutions for 7 should be studied fur-
ther.

The exact reflection coefficient is also expressed
in the single-center transition matrix ¢, by Eq.
(3.5). Since the crystal is not restricted to the
muffin-tin model, Eqgs. (2.23) and (3. 5) may be ap-
plied to overlapping ionic potentials. The method
proposed here also shares the advantage with other
multiple-scattering theories, 318 i e, no Bloch-
wave expansion is required. As a result, this
method is extremely useful in studying crystals with
impurity layers. Furthermore, the perturbation
expression is capable of giving a clearer physical
picture for the electron scattering processes. The
other advantage of this transition-matrix formalism
is that no wave function and energy band need be
calculated.

Equation (4. 16) is the expression for the scatter-
ing amplitude in a compact matrix form for the
case of muffin-tin potentials. The elements of the
matrix F are expressed in terms of the structure
constants AL}, and the tangent of the phase shifts
tanny. The structure constants, which are func-
tions of the incident energy E and the parallel wave
vector E,,, are characteristic of the lattice structure
but independent of the potential and the lattice con-
stants. They need tobe calculated once for each type
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of lattice structure and they may be calculated ac-
cording to Kambe’s transformations. !2 Since the
phase shifts appear in the tangential form, the scat-
tering amplitude does not change as 71} is reduced
by modulo 27. This has the same cancellation ef-
fect as a repulsive potential added to the crystal
potential to form the pseudopotential in cancelling
the oscillations for the wave function far from the
core. The phase shifts can easily be calculated by
numerical integration or by WKB method. ** The
dimension of the matrix F depends on the number
of atoms assigned in the reference column and on
the number of tann} which are nonzero. If there
are N atoms assigned in the reference column and
1, +1 phase shifts need to be considered, the di-
mension of the matrix F is N(@, + 1)2. However, the
symmetry of the incident wave vector k and the
crystal structure can reduce the dimension of the
matrix considerably, 1218

Since the calculation for the structure constants
requires much computational time, it is desirable
to find a way to obtain the approximate structure
constants by a method which is analogous to that
for the approximate structure constants used in en-
ergy-band calculations. ¥

Equation (6. 11) expresses the scattering ampli-
tude in Born expansions for an effective potential
which is weak when tann}’s are small and favors
fast convergence. This is an analogy to the pseudo-
potential formulation for the energy-band calcula-
tion. Since the representation in phase shifts can
eliminate the difficulty of calculating the pseudopo-
tential from core states, this method is simpler than
the pseudopotential energy-band-matching form-
alism, 1%20

In the case when there are virtual resonances in
tanny, Eq. (4.16) seems more suitable for use. One
kind of the surface resonance®! is identified by Eq.
(7. 6) as arising from the virtual resonance in tanm.

APPENDIX: DERIVATION OF EQ. (5.11) BY KAMBE’S
MODIFIED KKR METHOD

We start with Eq. (5. 5) for the wave function with
the scattering amplitude R; appearing explicitly:

9)=190) g s (el VIvd+sviv) . @ap)

This is a self-consistent solution for lz,b ).

With the aid of the Schrodinger equation given by
Eq. (2. 5) and by applying the Green’s theorem, *?
the volume integration in Eq. (A1) may be trans-
formed into surface integrations!?;

[v)=o; («pk.le ¥) = (8,0 bgl9))

ZAK R,

+(8le,. 9)-0,.G]v)), (A2)
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where the symbol 3, denotes 8/87, and the surface
integration is taken over all the surfaces of the
muffin-tin potentials assigned in the reference col-
umn.

By changing coordinates to the centers of the
atoms assigned in the reference column, Eq. (A2)
may be rewritten as

l9*)=23 [9%) ZA‘KR (@0,

-<ar,, ,d)v 'v='c+(9““larv(/)v

-8, 8" [4")), s . (A3)

For muffin-tin potentials, both the wave function
|¥* ) and the structural Green’s function §** may
be expanded into spherical harmonics?:

=2 v (| R Ea %), (ad)
where 7% is the expansion coefficient, and
§ev= T (F, 1Y) (i k) ABS

L,L'

+ kv k) 6500 8,,) G I 7,) (Yo [E)) . (A5)

Substituting Eqs. (4.9), (A4), and (A5) into Eq.
(A3) and carrying out the surface integrations to
evaluate 7% (#5 | R} ), we obtain

2 {5u. -

L', v

(=a)n)*
2AK;R;

1 (Ee Sy -E303)

X (Y [k) k3| Yp0 ) (7S |5 k) Ldpsy R ]

- (s I Jik) ALy + k(L |"tk> 6r2:0uy)

<L, R,,]}ng REY=0,  (a6)
where [f, g] is the Wronskian defined by
[f’ gl: (fvug _gvuf)r“-rﬁ . (A7)

The phase shift of the partial wave / in the uth
muffin-tin potential is defined by*

tann;‘= [jb R,]/[n,, Rl}
With the aid of Eq. (A8), Eq. (A6) becomes

(A8B)

2 (FgL

& _ZAKR D E;)

tann. k!
(75| jpk) = ry|ny k) tanmy;,

v 7’1,'<7’u|R1'> 0. (AQ)

In order to have nontrivial solutions for the coef-
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ficients yf (»,.| R}’ ), the determinant of the coeffi-
cients should vanish:

k” tann},
det =l l

=0. (Al10)

After factoring out

k- tanm}s /(75| jyk) = (S| ny k) tanmy) |

Eq. (A10) becomes

det| F v, - -DEy =0, (A11)

2AK‘

which is identical to Eq. (5.11).
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It is shown that the well-known Lifshitz formula for the retarded van der Waals attraction
between two solid half-spaces can be obtained from the zero-point energy of the interacting

surface plasmons.

INTRODUCTION

Recently it was shown® that a nonretarded van

der Waals attraction between solid half-spaces
(separated by a gap) can be obtained from the inter-
action of the surface excitations on either side of



